
Fuzzy Queries with Linguistic Quantifiers for

Information Retrieval from Data Bases

Marc Uszynski

Report No. UCB/CSD 87/333

July 29, 1986

Computer Science Division (EECS)
University of California
Berkeley, California 94 720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 JUL 1986 2. REPORT TYPE

3. DATES COVERED
 00-00-1986 to 00-00-1986

4. TITLE AND SUBTITLE
Fuzzy Queries with Linguistic Quantifiers for Information Retrieval from
Data Bases

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This system is an extension of Prolog toward semantic unification for processing vague queries on a
relational data base containing imprecise or uncertain informations. Representation of imprecise and
uncertain knowledge is based on fuzzy sets and possibility and necessity measures. A treatment of fuzzy
linguistic quantifiers is presented.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Fuzzy queries with linguistic quantifiers for information
retrieval from data bases

Marc VuJJn•ki•

Computer Science Division
University of California, Berkeley

Berkeley, California 94720

ABSTRACT

This system is an extension of Prolog toward semantic unification for
processing vague queries on a relational data base containing imprecise or
uncertain informations. Representation of imprecise and uncertain
knowledge is based on fuzzy sets and possibility and necessity measures. A
treatment of fuzzy linguistic quantifiers is presented.

1. Introduction

In the past few years, along with the growing importance and use of data bases, there
has been a growing interest in information retrieval systems. Not only has become impor­
tant the ability to store a large amount of data, but we have also been able to retrieve it
efficiently. Speed, expressiveness and friendlyness have been among recent considerations
when designing such systems.

But one important aspect has somewhat been left apart. This aspect would be the abil­
ity to ask questions in a more natural way, that is to say, in a way that would allow gen­
eral queries, queries that, even though more flexible, could retrieve interesting data (and
maybe non-interesting data because of this flexibility but this is not the point l. Very often
a user has to formulate his query in a very precise manner, translating sometimes a gen­
eral concept into numerical values, having therefore a doubt to miss interesting data.

This system allows you to stick to your general and imprecise concept. Those queries
can be used either with a classic data base or with a data base where data can also be
imprecise and expressed in a linguistic way. The system is written in Prolog, which is both
a relational data base management system and a programming language. The representa­
tion of the imprecision is based on fuzzy logic, theory introduced in 1968 by Pr. Zadeh. Sec­
tion 2 describes some basic comcepts relative to fuzzy logic, data bases and Prolog in order
to set up the background knowledge for a better understanding of section 3, which covers
the calculus necessary to handle imprecision in both queries and data.

2.

2.1. Data bases and queries

Basically a relational data base would be constituted of relations containing records.
For a single relation, every record has the same structure, i.e. the same number of attri­
butes, arranged in always the same order. A relation is defined by a relation name and
attribute names. It could be viewed as a cartesian product of two domains: the first one con­
taining the objects described by the relation and the second one containing the attributes.
A column of the table representing the relation stands for an attribute and a row for an
object: for instance an EMPLOYEE relation can be represented in the following way:

•Supported in part by NSF Grant NSF IST-8320416 and DARPA Contract N00030-84-C-0080.

- 2 -

EMPLOYEE Name Age Manager Salary
joe 35 bob 30000
john 50 joe 20000
jack 25 joe 16000
...

In Prolog the way to represent such a relation is to create a Prolog-clause for each
row, whose predicate is "employee" and whose arguments are the values of the attributes.
Clauses do not have a right-hand side. They are also called facts. For instance in this case:

employee Goe, 35, bob, 30000).
employee yohn, 50, joe, 20000).
employee Gack, 25, joe, 16000).

Then, a typical query in Prolog would be: ''Find all records in such relation, such that attri­
bute i has such value". For instance: "Find all employees, whose manager is bob". This
query is translated is Prolog in the following way:

employee (X, _, bob, _)?

The variable "-" (underscore), called the anonymous variable, tells that we are not
interested in this attribute. The system will go over every record in the employee relation,
matching it with the query, that is, matching every instantiated attribute in the query
with the record under consideration. Whenever the manager is ''bob", the corresponding
employee name is retrieved. In a query, there is an implicit and between attributes, e.g.
"employee (X, _, bob, 30000)?" means: ''Find all employees who earn $30000 a year and
whose manager is bob". You can also retrieve a single record by asking:

employee yohn, Age, Manager, Salary)?

The system will answer: Age = 50, Manager = joe, Salary = 20000. But the mecanism is
quite the same except that, when matching the query against the file, only one record will
succeed (except if there are more than one employee named john).

2.2. Imprecise data and queries

This is how would work a classical data base and a query session in Prolog. Let's now
describe how we can introduce imprecision in both data and queries and what type of query
the system can now handle.

We won't go over the theoretical background about fuzzy logic in great detail. See
references for that purpose. Let's just recall some basic ideas in order to set up the notation.
A fuzzy set F in X is represented by its membership function p.F:X -+[0,1] taking its values
in the [0,1] interval. Suppose that A is an attribute, i.e. a column of our simple data base,
taking its values in a certain domain X. Imprecision and uncertainty in the knowledge
about A can be represented by what is called a possibility distribution over the domain X,
ITA<e>, e standing for a specific employee. Consider a data base, which could be a criminal
file and contain informations held by the police that could be imprecise or incertain. This
data base would have such attributes as name, age, height, weight. For a single attribute,
various types of information can be stored. Here is a few examples and the possibility dis­
tributions associated:

*

*

The suspect age is unknown:

ITAge(suspect) (x)=1 for all x in [0,100]

The age is known with certainty to be between 20 and 30, but no further information
is available:

*

- 3 -

llige(suspect)(x)=1 for 20::5x::530
fiAge(su.spect)(x)=O for x<20 and x>30.

The age is best described by a linguistic term such as young:
fiAge(suspect)(X)=JLyoung(X) for all x in [0,100], where young is a fuzzy set and
JLyoung its membership function.

A portion of the data base could have the following aspect:

SUSPECT Name Age Height Weigh
john 24 177 160
joe [25,30] around(180) around(200)
jack young [170,190] 2:(200)
jim unknown tall unknown
...

young and tall are fuzzy set labels, around and 2: are fuzzy set modifiers. All data in this
relation are converted into possibility distributions, even though they are crisp values. All
data are assumed to have only one single truth value; when the data is not crisp but
described by a possibility distribution, all the possible values are mutually exclusive.

This type of data base can be stored in Prolog in exactly the same way as shown pre­
viously and the same kind of queries can be treated after having modified the matching
mecanism. The matching is no longer syntactic but now a match has to be conducted
between the two semantic representations of apparently different atoms. Queries as:

"Find all suspects whose age is around 25, whose height is around 170 ems and whose
weight is around 180 pounds"

or "Find all suspects that are young, tall and weight between 170 and 200 pounds"
are typical queries for this system and show much more flexibility and expressiveness than
traditional queries. Two matching degrees are computed with each record retrieved so that
they can be ranked.

In addition to these capabilities, quantification can be specified. In the original query,
there is an implicit and between attributes and all attributes must be satisfied. Now
queries such as:

"Find all records where Age is young or height is tall or weight is around 180"
or "Find all records where most of the attributes {age is young, height is tall, weight is

around 180} are true"

are valid queries. most can be replaced by quantifiers like almosLall, all, half, around_half,
and so on. The next section will describe the computation of the two matching degrees.

3.

3.1. Possibility and Necessity
Whenever the data stored is uncertain or vague, or when the query is vague itself, a

match between a unit of data and the query cannot be determined with complete sureness
because the exact values of both data and query are not known with precision. One way of
getting, in spite of this, some information is to consider successively the most favourable
case and the less favourable case and in this way retrieve two matching degrees called
respectively Possibility and Necessity.

Let's consider an object s of a data base (in our example s is a suspect like john). A(s)
is one of the attributes (age, height, ...) and Q is a unit of query dealing with the same attri­
bute (age is young). Q must be viewed as a union of possible solutions for achieving the
match, the union (let's call it a) of all ages that can fit the description young. In our

- 4 -

example "age is young", is stands for an equality. This is the simplest form of relation that
can be requested between the attribute and the atom young. But other relations can be
specified like: much bigger than, around or not. These relations are also described by a
membership function p.r. The general form of a query focused on only one attribute is the
following:

''Retrieve all records s such that A(s) r a"

a corresponds to young in our case.

In this framework then, the possibility measure Pos is the possibility that the value of
the attribute A for the object s is in the set of elements that are in relation r with at least
one element of a. And the necessity measure Nee is the necessity of the same event, that is
the necessity that the value of the attribute A for the object s is in the set of elements that
are in relation r with at least one element of a.

and

with

Pos(r(al!A(s)) = SuR Min (p.r(aJ(x), 0A(s)(x))
I In X

Nec(r(a liA<sl) = lnf Max (p.r(al(X), 1- llA<sJ(x))
xmX

Jlr(a)(X) = SuR Min (p.r(x.y), p.a(y))
ymX

In the case where the information stored in the data base A(s) is precise, that is, has a sin­
gle value, then the two matching degrees are equal. In other cases they are not. p.a is the
membership function describing the atom a (a = young in our example) and p.r is the
membership function of the relation r, which can be fuzzy, defined over the cross product
XxX, where X is the universe of discourse for the attribute A. For instance, around can be
represented in the following way:

Y·X

As an example of those two matching degrees, suppose that we have in the data base
the assertion "john is young" and that we are looking for people whose age is around 30.
Both concepts can be represented as fuzzy numbers and drawn on the same diagram.

1

0.79

10

- 5 -

.
. . .

........ ., . .
.. ~

30

. .

We can then conclude that the possibility that john is around 30 is 0.79 and that the neces­
sity that john is around 30 is 0.

3.2. Agregation of single queries. Fuzzy quantifiers.
So far, we have only considered queries dealing with only one argument. But very

often we need to specify queries where more than one argument is implied. The simplest
example of compound queries is when there is an implicit and between arguments
(" ... where age is young and height is around 170 and ... "). This case and the symetric one,
corresponding with or between arguments, are solved by taking respectively the minimum
and the maximum of atomic degrees.

Pos(Q 1 and Q2ls) = Min (Pos(Q ds), Pos(Q 2ls))

Nec(Q 1 and Q2lsl = Min (Nec(Q tis), Nec(Q 2ls))

Pos(Q 1 or Q2ls) =Max (Pos(Q tlsl, Pos(Q 2ls))

Nec(Q 1 or Q2ls) = Max (Nec(Q dsl, Nec(Q 2ls))

These formulas are only true when the attributes implied in queries Qt and Q2 are
independent, that is, that their values are not related with one another's.

But it is also possible to quantify a query in many other ways, according for instance,
only a certain number of arguments to be satisfied, e.g.

''Find all records where most of the following conditions are satisfied: age is young,
height is around 170, weight between 170 and 200, hair color is dark, and so on."

so that, if for a suspect, only one attribute doesn't match at all, while all others do, this
record is still retrieved. This gives an even greater flexibility to queries. Examples of
quantifiers would be: most, almost-all, more than 50%, at least a few ... Quantifiers can be
represented also by fuzzy sets in the interval [0,1]. Very often the meaning of such linguis­
tic quantifiers is not easy to capture and can depend on the domain but, for instance, most
can be described by:

- 6 -

0.5 o.a

Once we have those representations, the possibility and necessity degrees for a query like:
"Find all records where q out of the following conditions are satisfied {A t(s) n at,
A2(s) r2 a2, ... , An(s) rn an}."

is computed in the following manner: after computing the values of the two matching
degrees (possibility and necessity) for each single query Ai(S) ri ai, we have membership
degrees of the two fuzzy sets of attributes being possibly matched and necessarily matched.
Then the ratio of the two sigma-counts of these sets over the number of arguments n is
computed:

rp = l ~Pos(rwdAi(s))
n •=l

rN = l ~Nec(riaijAi(s))
n •=l

Those two ratios are themselves matched against the definition of the quantifier q. So,
eventually, the two matching degrees for this query Q are:

Pos<Qis) = p.q(rP) and Nec(Qis) = p.q(rN)

3.3. Requirements and Implementation
The data is stored in a Prolog-fact style, with a predicate (in this case the relation

name) and arguments. The third line of our table is converted to:
suspect Gack, young, [170,190], 2:(200)).

To keep it general, let's call the relation name (here suspect) rel. The general form of a
question with no quantifiers would be as in classical Prolog except for adding an f before
rel: frel(.,., ... ,.)? Each argument of the query could be either an uninstantiated variable in
order to retrieve a unit of data or an atom with optional relation specifications. The implicit
one is equality. This is the r a form we talked about earlier. Examples of relations are:
around, at least (2:), at most (:s), ... The atom can be a number, an interval ([20,35]), an
object name (with no fuzzy definition), or a fuzzy concept (young, tall, ...). When computing
the matching degrees, every r a is converted into a fuzzy number, except for the object
name that has no fuzzy description. In this last case, the match either completely succeed
or completely fail as in a classical Prolog query.

Every fuzzy concept has to be defined by a fuzzy number. This fuzzy number can be
specified for a precise attribute inside a precise relation. Those descriptions are context
dependent. There can very possibly be two descriptions of the same atom depending on the
context (good can be viewed very differently for a student grade or for an economic ratio).
But not only concepts that are used in the data base have to be described by fuzzy numbers
but also concepts that are likely to be use by a potential user. If the semantic counterpart
is not present, the match will most of the time fail.

- 7 -

With a quantifier, the general form of a query is the following:

q (Q, [liste of queries])?

Q is a quantifier whose description has also to be stored. Q can also be and or or. The list of
queries is a list of queries of the above form frel(.,., ... ,.).

4. Conclusion

This work is only a starting point that intends to demonstrate the possibility of stor­
ing imprecise and uncertain knowledge and using it in a way that is closer to our not so
rigorous commonsense understanding. Once a data base is complete and every possible con­
cept expressed by fuzzy numbers, it becomes no longer useful to remember in what precise
way the data is stored. And so, the data base can be used very efficiently by first-time
users.

The two matching degrees provide then a ranking of data. The user can decide himself
whether he wants to be very strict and consider .only completely relevant data or on the
contrary allows only a very slight match. Mechanisms of thresholds can also be introduced
in order to retrieved data relevant beyond a certain point.

There are possible extensions in different directions that can be added to this system:
allowing relations between attributes inside queries, or more possible interactions between
relations, and also storing and manipulating rules besides facts.

5. Example

The following session, even though very simple and not very realistic, shows what
types of queries the system can now handle. The first part is the data stored including the
description of the fuzzy numbers. The second part is a sample session on this data base.

5.1.

suspect(john, 24, 177, 160).
suspect(joe, [25,30], around(180), around(200)).
suspect(jack, young, [170,190], > = (200)).
suspect(jim, unknown, tall, unknown).
suspect(joan, around(35), small, < = (140)).
suspect(julianne, young, tall, unknown).

The fuzzy numbers are stored using a fnum predicate whose arguments are respectively the
fuzzy set label, a relation name and an index inside the relation to make it specific to a pre­
cise attribute, and four numbers representing the fuzzy number. The fuzzy number (Mi,
Ms, Ei, Es) takes the value 1 between Mi and Ms and the value 0 before Mi-Ei and after
Ms+ Es. The shape of the curb is trapezoidal. Only the two last can take an infinite value.

fnum(old, suspect, 2, 70, 90, 10, inf).
fnum(young, suspect, 2, 15, 25, 10, 10).
fnum(very_tall, suspect, 3, 195, 200, 10, inf).
fnum(tall, suspect, 3, 175, 190, 10, 10).
fnum(medium, suspect, 3, 165, 180, 10, 10).
fnum(small, suspect, 3, 120, 155, inf, 15).
fnum(unknown, suspect, lnd, 10, 10, inf, inf).

The following fuzzy numbers are modifiers and quantifiers. Quantifiers can be either rela­
tive or absolute.

fnum(around, suspect, 2, -2, 2, 3, 3) :- !.
fnum(around, Rei, abs, -10, 10, 20, 20) :- !.
fnum(around, Rei, Ind, -5, 5, 8, 8) :- lnd /= rei.
fnum(> =,Rei, lnd, 0, 0, 0, infl.

5.2.

- 8 -

fnum(< =, Rei, Ind, 0, 0, inf, 0).
fnum(much_greater, Rei, lnd, 4, 4, 2, inf).
fnum(most, Rei, rei, 80, 100, 50, inO.
fnum(almosLall, Rei, rei, 90, 100, 20, inf).
fnum(haif, Rei, rei, 45, 55, 10, 10).
fnum(all, Rei, rei, 100, 100, 0, inf).

fsuspect(jack, Age, Height, Weight)?
Nee= 100,Pos = 100
Age= young
Height= [170, 190]
Weight= > =(200l

fsuspect(X, around(25), around(170), _)?
Nee = 75, Pos = 75
X= john

Nee = 0, Pos = 100
X= joe

Nee = 0, Pos = 100
X= jack

Nee = 0, Pos = 100
X= jim

Nee = 0, Pos = 0
X= joan

Nee = 0, Pos = 100
X= julianne

fsuspect(X, [20, 30], medium, > = (170))?
Nee = 0, Pos = 0
X= john

Nee = 27, Pos = 100
X= joe

Nee = 0, Pos = 100
X= jack

Nee = 0, Pos = 100
X= jim

Nee = 0, Pos = 0
X= joan

Nee = 0, Pos = 100
X= julianne

quest(and, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsuspect(X, _, _,
> = (170))])?

Nee= 0, Pos= 0
X= john

Nee= 27, Pos= 100
X= joe

Nee= 0, Pos= 100
X= jack

Nee= 0, Pos= 100
X= jim

Nee= 0, Pos= 0
X= joan

Nee= 0, Pos= 100
X= julianne

- 9 -

quest(most, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsuspect(X, _, _,
> = (170))])?
Nee= 72, Pos= 72
X= john

Nee= 90, Pos= 100
X= joe

Nee= 6, Pos= 100
X= jack

Nee= 0, Pos= 100
X= jim

Nee= 0, Pos= 0
X= joan

Nee= 0, Pos= 100
X= julianne

quest(almost _all, [fsuspect(X, [20, 30], _, _), fsuspect(X, _, medium, _), fsus­
pect(X, _, _, > = (170))])?
Nee= 0, Pos= 0
X= john

Nee= 25, Pos= 100
X= joe

Nee= 0, Pos= 100
X= jack

Nee= 0, Pos= 100
X= jim

Nee= 0, Pos= 0
X= joan

Nee= 0, Pos= 100
X= julianne

- 10-

fsuspect(X, young, tan, around(lSO))?
Nee= 0, Pos= 0
X= john

Nee= 0, Pos= 38
X= joe

Nee= 0, Pos= 0
X= jack

Nee= 0, Pos= 100
X= jim

Nee= 0, Pos= 0
X= joan

Nee= 0, Pos= 100
X= julianne

quest(most, [fsuspect(X, young, _, _), fsuspect(X, _,tall, _), fsuspect(X, _, _,
around(l80))])?
Nee= 72, Pos= 72
X= john

Nee= 10, Pos= 98
X= joe

Nee= 40, Pos= 72
X= jack

Nee= 6, Pos= 100
X= jim

Nee= 0, Pos= 0
X= joan

Nee= 72,Pos= 100
X= julianne

6. References
[1] J. Kacprzyk and A. Ziolkowski, Retrieval from data bases using queries with fuzzy

linguistic quantifiers, Polish Academy of Sciences, 1986.
[2] L. A. Zadeh, A computational approach to fuzzy quantifiers in natural languages,

Comp. & Maths. with Appls. Vol 9, No.1, pp. 149-184, 1983.
[3] D. Dubois, H. Prade, Manipulation d'informations incompletes ou incertaines et traite­

ment de questions vagues dans une base de donnees, Theorie des possibilites, Masson,
Paris, 1985.

[4] L. Bole, A. Kowalski, M. Kozlowska, T. Strzalkowski, A natural language information
retrieval system with extensions towards fuzzy reasoning, Int. J. Man-Machine Stu­
dies, 23, 335-367, 1985.

- 11 -

[5] A. Gilles, M. Uszynski, Logique Floue, Seminar, Ecole Centrale des Arts et Manufac­
tures, 1985.

[6] L. A. Zadeh, The role of Fuzzy Logic in the management of uncertainty in Expert Sys­
tems, North-Holland, 1983.

[7] C. J. Date, An Introduction to Database Systems, The systems programming series,
Third Edition, Vol. 1, Addison-Wesley, 1982.

[8] J. F. Baldwin, Support Logic Programming, University of Bristol, England, 1986.
[9] L. A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems,

3-28, 1978.

[10] L. A. Zadeh, Test-score semantics for natural languages and meaning representation
via PRUF, Tech. Note 247, AI Center, SRI International, Menlo Park, California,
1981.

[11] A. Zimmer, Some experiments concerning the fuzzy meaning of logical quantifiers,
General Surveys of Systems Methodology, Edited by L. Troncoli, 435-441, 1982.

[12] B. P. Buckles and F. E. Petry, Extension of the fuzzy database with fuzzy arithmetic,
Proc. IFAC Symposium, Fuzzy Information, Knowledge Representation and Decision
Processes, 409-414, Marseille, July 19-21, 1983.

Prolog Code

% f is a question in regular Prolog. Here the program will look for
% solutions trough a fuzzy pattern matching.
% this generates all clauses of the data base that are of the same
%kind as the one in the question.

ftQ) :- fq(Q, Nee, Pos),
prin("O, ''Nee = ", Nee, ", Pos = ", Pos).

fq(Q, Nee, Pos) :- functor(Q, F, NJ,
functor(Ql, F, N),
Ql,
uniftQ, Ql, Nee, Pos, F).

% quest is a question including a quantificator and several atomic questions
% of the above form, ie f followed by the name of the relation.
% This quantifiation allows the user to specify if he wants all the atomic
% questions true at the same time or only almost all, half of them, and so on ..
% abs and rei specify whether the quantifier is of the first kind (absolute
% count) or of the second kind (relative count).

q(Quant, Liste) :- quest(Quant, Liste, Nee, Pos),
prin("O, "Nee = ", Nee, ", Pos = ", Pos).

quest(Quant, Liste, Nee, Pos) :- explicit(Liste, Liste_expl, Lu),
questl(Quant, Liste_expl, Nee, Pos).

o/c explicit allows the user to specify a same query for more than one
% argument of the relation in a compact way.
%For instance: arguments(fpers, 2, 4, >=(good), L) will be understood in
%the folJowing way: [fpers(_,> =(goodl,_,_,_,_),fpers(_,_,> =(good),_,_,_),
% fpers(_,_,_, >=(good),_,_)], the connective being specified as usually.
% The first index is 1.
% un is a function that bound together variables whose indexes are given
% in the list L.

explicit([], [], L).

explicit([arguments(Frel, 11, 12, Cl, LauliLJ, [ElliLcons], Lu) :­
Il < = 12,
I .,
imax(Frel, Imax),
functor(Ell, Frel, lmax),
arg(ll, Ell, Cl),
un(Ell, Lau, Lu),
Ilp is 11 +1,
explicit([arguments(Frel, 11p, 12, Cl, Lau)ILJ, Lcons, Lu).

explicit([arguments(Frel, 11, 12, Cl, Lau)ILJ, Ll, Lu) :­
Il > I2,
I .,
explicit(L, Ll, X).

explicit([AILJ, [AILlJ, Lu) :- explicit(L, Ll, Lu).

- 2 -

un(El, [], []).
un(El, [AIR], [AliRl]) :- arg(A, El, Xl, Al = X, un(El, R, Rl).

questl(or, Liste, Nee, Pos) :- maxdeg!Liste, Nee, Pos).

questl(and, Liste, Nee, Pos) :- mindegrListe, Nee, Pos).

questl(Quant, Liste, Nee, Pos) :- fnum!Quant, Rei, abs, Mi, Ms, Ei, Es),

' .,
sumdeg(Liste, N, PJ,
nec(Mi, Ms, Ei, Es, N, N, 0, 0, Nee),
pos!Mi, Ms, Ei, Es, P, P, 0, 0, Pos).

questl(Quant, Liste, Nee, Pos) :- fnum(Quant, Rei, rei, Mi, Ms, Ei, Es),

' .,
agreg(Liste, N, P),
nedMi, Ms, Ei, Es, N, N, 0, 0, Nee),
posrMi, Ms, Ei, Es, P, P, 0, 0, Pos).

% agreg computes the fuzzy cardinality.

agreg(Liste, N, P) :- nbel(Liste, No),
sumdeg(Liste, Nee, Pos),
N is NedNo,
Pis Pos/No.

nbel([], 0).
nbel([XIYJ, N) :- nbel(Y, Nl), N is Nl+l.

% sumdeg realizes the summation of the matching degrees of terms of a list.
% maxdeg computes the greatest degrees.

sumdeg([J, 0, 0).
sumdeg([XIYJ, Nee, Pos) :- sumdeg(Y, N, P),

X= .. [FIAJ,

maxdeg([], 0, 0).

name(F, Aux),
Aux = [FuiRJ,
name(Rel, RJ,
Q = .. [RellA],
FQ = .. [fqi[Q, Nl, Pl]],
FQ,
Nee is N+Nl,
Pos is P+ Pl.

maxdeg([XIYJ, Nee, Pos) :- maxdeg(Y, N, P),
X= .. [FIAJ,
name(F, Aux),
Aux = [FuiRJ,
name(Rel, R),
Q = .. [RellA],
FQ = .. [fqi[Q, Nl, Pl]],
FQ,
max(N, Nl, Nee),
max(P, Pl, Pos).

- 3 -

mindeg([], 100, 100).
mindeg([XIYJ, Nee, Pos) :- mindeg(Y, N, P),

X= .. [FIAJ,
name(F, Aux),
Aux = [FuiRJ,
name(Rel, R),
Q = .. [RellA],
FQ = .. [fqi[Q, N1, P1]],
FQ,
min(N, N1, Nee),
min(P, P1, Pos).

% these clauses are for producing listings of execution. Use tell(filename)
% if you want to store this in a file.

doc(Q) :- prin("O, "0, Q), Q = .. L, uninarg(L, Luni),
Q, print(""), prinarg(Luni,O).

uninarg([], []).
uninarg([XIYJ, L) :- var(X), !, uninarg(Y, L1), append([X], L1, L).
uninarg([XIYJ, L) :- X = [_,_], !,

uninarg(X, L1),
uninarg(Y, L2J,
append(Ll, L2, U.

uninarg([XIYJ, L) :- X = .. XE,
XE I= [_], !,
uninarg(XE, L1 1,

uninarg(Y, L2), append(L1, L2, L).
uninarg([XIYJ, L) :- uninargfY, L), !.

prinarg([J,X).
prinarg([XIYJ,I) :- print("_", I, "= ", X, " ''), 11 is I+ 1, prinarg(Y,Il).
append([], L, L).
append([XIYJ, L1, [XIL2]) :- append(Y, L1, L2).

% make the two lists of arguments match together.

unifl:C, C1, Nee, Pos, F):- C = .. L,
C1 = .. L1,
L = [_ILA],
L1 = [_ILA1J,
unifl(LA, LA1, Nee, Pos, F, 1).

% unifl is the unification of the two lists of arguments
% unifa is the unification of two arguments
% the agregation of the necessity and possibility degrees are made
% by the min operation, assuming the independance of the arguments

unifl([J, [], 100, 100, F, D.
unifl([A1IL1J, [A2IL2], Nee, Pos, F, I) :- unifa(A1, A2, N, P, F, I),

11 is I+ 1,
unifl(L1, L2, Ne, Po, F, 11),
min(N, Ne, Nee),
min(P, Po, Pos).

min(X, Y, X):- X < = Y, !.
min(X, Y, Y).

max(X, Y, X) :-X > = Y,!.
max(X, Y, Y).

- 4-

% fnum is the fuzzy number attached to the argument inside the relation

unifa(A, A, 100, 100, F, I) :-!.
unifa(Al, A2, Nee, Pos, F, I) :- fnum(Al, F, I, Mil, Msl, Eil, Esl),

fnum(A2, F, I, Mi2, Ms2, Ei2, Es2),

' .,
pos(Mil, Msl, Eil, Esl,

Mi2, Ms2, Ei2, Es2, Pos),
nec(Mil, Msl, Eil, Esl,

Mi2, Ms2, Ei2, Es2, Nee).

%The possibility and necessity that the fuzzy event F (Mil, Msl, Eil, Esl)
% is true knowing C (Mi2, Ms2, Ei2, Es2) is defined by
% Pos(F) = sup min (uF(w), uC(w)) and
% Nec(F) = inf max (uF(w), 1-uC(w)).

pos(Mil, M, Eil, Esl,
M, Ms2, Ei2, Es2, 100) :- !.

pos(Mil, Msl, Eil, Esl,
Mi2, Ms2, Ei2, Es2, OJ :- Esl /= inf,

Ei2 '= inf,
Msl + Esl < = Mi2-Ei2, !.

pos(Mil, Msl, Eil, 0,
Mi2, Ms2, 0, Es2, 0) :- Msl < Mi2, !.

pos(Mil, Msl, Eil, inf,
Mi2, Ms2, Ei2, Es2, 100) :- Msl < Mi2, !.

pos(Mil, Msl, Eil, Esl,
Mi2, Ms2, inf, Es2, 100) :- Msl < Mi2, !.

pos(Mil, Msl, Eil, Esl,
Mi2, Ms2, Ei2, Es2, Pos) :- Msl < = Mi2,

Pos is 100-(100*Mi2-100*Msl)/(Esl + Ei2),

pos(Mil, Msl, Eil, Esl,
Mi2, Ms2, Ei2, Es2, Pos) :- Ms2 < Mil,

pos(Mi2, Ms2, Ei2, Es2,
Mil, Msl, Eil, Esl, Pos),

!.
pos(Mil, Msl, Eil, Esl,

Mi2, Ms2, Ei2, Es2, 100) :- !.

nec(Mil, Msl, Eil, Esl,
Mi2, Ms2, Ei2, Es2, Nee) :- ng(Mil, Eil, Mi2, Ei2, Ng),

nd(Msl, Esl, Ms2, Es2, Nd),
min(Ng, Nd, Nee), !.

ng(Mil, inf, Mi2, Ei2, 100) :- !.
ng(Mil, Eil, Mi2, Ei2, 0) :- Mi2 < Mil-Eil, !.
ng(Mil, Eil, Mi2, inf, 0) :- !.
ng(Mil, Eil, Mi2, Ei2, 100) :- Mil < = Mi2-Ei2, !.

- 5 -

ng(Mil, Eil, Mi2, Ei2, Ngl :- Ng is IOO*(Mi2-Mil+Eil)/(Eil+Ei2), !.

nd(Msl, inf, Ms2, Es2, 100) :- !.
nd(Msl, Esl, Ms2, Es2, 0) :- Msl + Esl < Ms2, !.
nd(Msl, Esl, Ms2, inf, 0) :- !.
nd(Msl, Esl, Ms2, Es2, 100) :- Ms2+Es2 < = Msl,!.
nd(Msl, Esl, Ms2, Es2, Ndl :- Nd is 100*(Msl-Ms2 + Esl)/(Esl + Es2), '

% The fuzzy numbers are defined by four numbers. Only the two last can
% take an infinite value.

% this line is necessary for the system to be able to answer a
%imprecise question.

fsuspect(Xl, X2, X3, X4) :- frsuspect(Xl, X2, X3, X4)).

imax(fsuspect, 4).

% fnum is the fuzzy number attached to the argument inside the relation
% lnd is the rank of the argument.

% The fuzzy number (Mi, Ms, Ei, Es) takes the value 1 between Mi and Ms
% and the value 0 between Mi-Ei and Ms+ Es. The shape of the curb is
% trapezoidal.

fnum(Arg, Rei, abs, X, X, 0, 0) :- integer(Arg), !, X = IOO*Arg.
fnum(Arg, Rei, Ind, X, X, 0, 0) :- integer(Arg), Ind /= rei, !, X = Arg.
fnum(Comp(Pred), Rei, I, X, Y, Z, T) :-

fnum(Comp, Rei, I, Mil, Msl, Eil, Esl),
fnum(Pred, Rei, I, Mi2, Ms2, Ei2, Es2),

' .,
X is Mil+ Mi2,
Y is Msl + Ms2,
genadd(Eil, Ei2, Z),
genaddiEsl, Es2, T).

fnum([X,Y], Rei, abs, XI, Yl, 0, 0) :- !, Xl = IOO*X, Yl = IOO*Y.
fnum([X,Y], Rei, lnd, X, Y, 0, 0) :- Ind /= rei.

% genadd allows the two arguments to take infinite values (inf).

genadd(inf, B, inf) :- !.
genadd(A, inf, inf) :- !.
genadd(A, B, X) :- X is A+ B.

